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Note by the Author,  June 2005.  This  paper is  being made available  through Cycles  Research
Institute  more  than  15  years  after  its  original  preparation  and  presentation.  Considerable
developments have happened since then:

* The Foundation for the Study of Cycles has ceased to exist.

* Cycles Research Institute has started in a small way to try and re-establish cycles research.

* Much work has been done on the Harmonics Theory first presented in this paper. Although the
correct calculation was derived before publication of this paper, a slightly different calculation was
presented here. It incorrectly results in the dominant cycles always being related by ratios of 2.

* This paper presents ideas on understanding irregular cycles in planetary configurations that are
very little known, specifically average cycles versus specific occurrences.

* The relativistic gravitational effect of the planets on the Sun outlined here has been presented in
a later paper. However the discussion of how this idea came about and problems with both the
COM and tidal theories are presented here.

Towards a Unified Theory of Cycles

by Ray Tomes

Dewey and others have shown that cycles in many disciplines are related, from economics and
biology to geology, weather and astronomy. Along the way some unexpected relationships have
been found, such as cycle synchronies by Dewey (1970) and cycle frequency harmonics by Dewey
(1967). There is evidence that earth based cycles are caused by lunar and solar effects on the
earth's  weather  system.  The  relationship  of  solar  cycles  to  planetary  alignments  has  been
contested. No doubt this debate was partly due to the astrological association, but the problem of
finding a credible mechanism remained.

This paper explores cycle relationships. It presents new ideas to explain both the mechanism by
which  planetary  alignments  cause  solar  variations  and  the  reasons  for  detailed  harmonic
relationships.

Figure 1. Broad flow of cycle cause and effect.



Figure 2. Detailed flow of effects. 

This is not intended to be complete, but is indicative of the flow.



In 1977,  I performed an analysis  of  a wide range of  economic  variables  looking for common
factors. Several factors had nearly regular cycles. Further investigation, specifically looking for
cycles, lead to the discovery of regular cycles with periods of 4.45, 5.9, 7.15 and 9.0 years. These
cycles were used to successfully predict a variety of economic trends in the following years

Later, I noticed that the various periods were all integral fractions of a period of a little under 36
years.

4.45 5.9 7.15 9.0
x8 x6 x5 x4
----- ----- ----- -----
35.6 35.4 35.75 36.0

Subsequently I found periods of 3.0 and 4.0 years which fitted the pattern (as 3.0 x 12 and 4.0 x
9 are 36 years).

Looking at my original graph (figure 3), it shows a hint of a cycle near 5 years which might give
5.1 x 7 = 35.7 years. Research showed that both Hirst and Dewey (1967) had made similar
observations, based on quite different data, but arriving at values of 17.7 to 17.9 years, or half of
my 35.7 year result.

Omitting the 7.15 year cycle, and using 4.45 x 4, 5.9 x 3 and 9.0 x 2 would have given me the
same  answer  (say  17.8  years).  However,  Dewey's  catalogue  of  cycles  does  have  a  slight
concentration of cycles near 7.15 years, so I prefer the 35.7 year figure.

The ultimate  "fundamental"  is  clearly  longer  than  this  as  both  my 36  year  and the  54  year
Kondratieff cycle are fractions of a larger 108 year period.

 
Cycle Period in Years

Figure 3. Analysis of 22 Economic Variables for Cycles.



Dewey (1967) also noted that repeatedly multiplying and dividing by 2 and 3 from the base figure
of 17.75 years gave many periods which were common cycles.

Figure 4. Dewey's Harmonics of 17.75 years by repeated multiplication and division by 2 and 3.
Known cycles underlined.

It is true that harmonics of ratios 2 and 3 and their combinations give most of the significant
cycles. The factors 2 and 3 can give 2, 3, 4, 6, 8, 9, 12, 16, 18, 24 and so on. However there are
some occasional ratios of 5 and 7.

Curious about even shorter period cycles, I obtained 44 years of daily corn prices. Analysis showed
many cycles from weeks and months to years. Again  there were many cycles in  exact  ratios
involving 2 and 3 and their multiples. Eventually I realised that the pattern of frequencies present
in the corn prices was the same as the arrangement of frequencies of the white notes on a piano,
and that the ratios again lead back to a value near 18 or 36 years as the fundamental period. This
was peculiar, and going back to my early common economic cycles study I realised that the ratios
4:5:6:8 were exactly those of a major chord in music! Why are economic series playing major
chords and scales in very slow motion?

Research  showed  that  such  patterns  had  been  observed  and  reported  before  by  several
contributors  to  Cycles  magazine.  One of  these was D.S.  Castle  (1956)  who found that  stock
market cycles fit the musical scale. The pattern found ranged over three octaves, and all seven
white notes plus one black note were present in at least one octave. The fundamental period was
consistent with either 36.5 years or 54.7 years, and so fitted into the Dewey classification.

Dewey (1970) studied groups of cycles with the same period, and found that the phases were
generally clustered. Almost invariably the cycles were closely synchronised, and Dewey referred to
this as "Cycle Synchrony". It was a major factor in  dispelling his remaining doubts about the
reality of cycles. Although at times these groups of cycles were in related fields, at other times
synchrony was observed for diverse time-series.

Response Functions

In the real world, many things have an effect on many others. Sometimes the effect has a simple
straight  line relationship with the cause, but more often the relationship when graphed has a
shape that is curved, possibly even in a complex manner.

An example might be the response of the earth's temperature to changing levels of solar radiation



reaching the earth. Initially, supplying more heat may raise the temperature at a uniform rate, but
then cloud formation may reflect much of the heat, reducing  the effect of adding more heat.
Eventually the clouds might be dissolved by greater heat allowing a more rapid heating again.
This is a hypothetical example to explain why relationships may be non-linear.

Figure 5. Response Functions

It is possible to imagine other more complex response functions, including ones with sharp kinks
or even discontinuities, but even relatively simple functions such as an exponential response will
later prove to have very interesting properties.

The above assumes an instantaneous response, which of course may not be the case. In our
temperature example, a sudden change in solar output would take some time to heat the earth,
which was ignored above. We will consider this now as a separate topic.

Lagged Functions

When a cause takes some time to have an effect, which may be gradual and die out after a while,
then we can construct a lagged function showing the effect over time. In this case, a very short
pulse will be assumed to be the cause, and the variation in the effect is graphed.

Take our hypothetical solar radiation example, and let the sun shine suddenly brighter for a short
time as shown.

 

Figure 6. Lagged Functions

The hypothetical lagged effect of a pulse of solar radiation is shown, with a rapid warming at first
at  ground  level,  and  then  a  gradual  return  to  the  original  temperature  as  the  heat  slowly
dissipates.



It is possible to have lagged functions that swing first one way and then the other before returning
to zero. Many economic responses are of this type, carrying the seeds of their own destruction. It
is also possible that the lagged function will not ultimately return to zero, but a permanent change
will result.

As with response functions, it  is possible to imagine some very complex lagged functions, but
again, some quite simple examples will be found to be of interest. It is not uncommon to have
discontinuities in lagged functions.

Systems Built from Response and Lagged Functions

In  our  real  world,  as  mentioned  earlier,  the  interconnectedness  of  all  things  is  exceedingly
complex. The objective here is not to perfectly explain all things, but to show some of the possibly
interesting results that might occur based on assumptions which will at least be approximations to
the truth.

 It is possible to imagine various parts of our world being affected in an interconnected way:-

Notice that the temperature affects evaporation which affects the cloud cover which in turn further
affects  evaporation.  There are  many such examples  of  feedback in  the above very simplified
picture. Feedback itself is an interesting topic and can lead to many diverse forms of behaviour
including stable, cyclic and chaotic behaviour, depending on the nature of the relationships.

Figure 7 needs to be interpreted by applying  our earlier  examples of  response functions  and
lagged functions:-

 

Figure 8. Lagged and Response Functions Combined

In practice, it may be difficult to fully separate the lagged and response functions, or their order
may be reversed.

Time Series seen as Cycles

Any time series (that is measurement of anything throughout time) may be expressed as the sum
of a number of perfect sine  waves. We do not  need to consider  that  the series was actually
produced this way, it is simply another way of expressing the same information.

The purpose of expressing time series as sums of sine waves is that some processes can be better
understood when the data are in this form.

As an example, our lagged functions will enhance or diminish cycles depending on the period or
frequency of the input. The lagged function will not create any new frequencies, but just change
the amplitude and phase of existing frequencies.

We may show this graphically:-



 

Figure 9. Response Function effect of frequency on amplitude

In this example, frequencies in the range A to B are enhanced, while all others are diminished.
Very high frequencies are not responded to at all. This might be the frequency response of our
solar radiation - temperature example.

Harmonics are created by non-linear Response Functions

If we feed sine waves into different response functions, the result is quite surprising. The output is
always a time series which is the sum of various sine waves that are all harmonics of the original
wave. By harmonics we mean frequencies that are integer multiples of the original frequency.

 

This means that in this case the input and output would look like:-

Figure 10. Development of Harmonics by Response Function



Notice that the first harmonic output is in phase (or 180 degrees out of phase) with the input in all
cases. This results in cycle synchronies even after multiple steps in a cause and effect chain and
helps explain Dewey's observations.

Some other examples of response functions and their makeup from harmonics are shown below.
In no case can any frequency be created which is not an exact multiple of the input frequency.

Note - not  true for multiple  input  frequencies when sums and differences of frequencies may
result.
 
Figure 11. Examples of Harmonics for various Response Functions

All Harmonics are not equal in complex systems

We have seen  that  a  single  response function  can  create  harmonics.  Generally  the  first  few
harmonics are the strongest, with a gradual fading away of higher order harmonics. The exact
manner of fading out depends on the particular function, but often we will  find that harmonics
fade away approximately in proportion to 1/frequency.

In  complex  systems  in  the  real  world,  we  have  already  seen  that  there  may  be  many
interconnections between different variables:-

 
Figure 12. Complex System with many interconnections.



We shall consider a collection of response functions, with many paths from A to B, but without any
feedback. In practice, feedback nearly always exists, but it can complicate things by creating new
cycles, and for the moment we only wish to investigate the creation of harmonics.

Some harmonics can be created in more ways than others. For example, the fifth harmonic can
only be created in one way, as 5 is a prime number. The sixth harmonic however can be created in
three ways, either directly as 6 or indirectly as 2 x 3 or 3 x 2. Some harmonics can be created in
very many ways for example 24 has twenty different ways of being created and 576 has 1,376
ways!

In B we would therefore expect the 6th, 24th and 576th harmonics of a frequency in A to be much
stronger than the 5th, 23rd and 577th which each have only one way of being created.

When a very complex interconnected system is assumed, all  the possible ways of arriving at a
harmonic are counted, and 1/frequency fading of harmonic amplitudes is assumed, we obtain a
chart of power in the harmonics from 1 to 2048 (figure 13).

It is not difficult  to see the wide variation of power in the different harmonics and the nearly
regular pattern for each doubling in harmonic number.

Relative Power (Log. Scale) of Harmonics from 2 to 2048.

Figure 13. Relative Power of Harmonics.



Let there be Music

If we look at one part of the structure, for example the "octave" from 48 through to 96, we find
that the harmonics with most power are:-

Table 1. Most Powerful Harmonics related to musical scale.

Harmonic 48 54 60 64 72 80 84 90 96

Note C D E F G A Bb B C

Amazingly, the nine most powerful harmonics turn out to have frequencies in
the same ratios as the eight white notes in one octave on the piano plus one black note. Also, the
one black note Bb is required to make the chord of C7 along with C-E-G-C. The strongest notes
are in the two chords C-F-A-C (F major) and C-E-G-C (C major).

The assignment of C to harmonic 48 is quite arbitrary, but this choice was made because the
major scale of C is all white notes. The choice of the "octave" from harmonic 48 to 96 was also
somewhat arbitrary. Different octaves have different power distributions of the individual "notes".
As  we  go  up  the  harmonics  scale,  the  relative  power  of  the  notes  in  each  octave  changes
gradually, but at a diminishing rate.

Well that is rather interesting, we started out trying to find out which harmonics are expected to
be generated in  time series  after going  through complex systems of  response functions,  and
ended up explaining how the notes used in music are exactly as they are, and what the main
chords should be!

Background to Planets' Influence on the Sun

Past attempts to explain aspect of solar variability and cycles in terms of planetary motion have
generally been based on either tidal forces or the motion of the sun about the Centre Of Mass
(COM) of the solar system.

Figure 14. The tides on body A raised by body B are high in the direction of B and opposite it,
and low at right angles to these directions.



 

Figure 15. The tides on body A raised by two other bodies, B and C are added when B and C
are in a straight line with A on the same or opposite sides. When B and C make a right angle at A
their tidal effects are subtracted.

Tidal Hypothesis

The tidal forces hypothesis for solar cycles has been proposed by Wood (1972) and others. Table 2
below shows the relative tidal forces of the planets on the sun. Jupiter, Venus, Earth and Mercury
are  called  the "tidal  planets"  because  they are  the  most  significant.  According  to  Wood,  the
especially good alignments of J-V-E with the sun which occur about every 11 years are the cause
of the sunspot cycle. He has shown that the sunspot cycle is synchronous with the alignments,
and J.  Schove's data for 1500 year of sunspot maxima supports  the 11.07 year J-V-E period
average.

Although the average period of J-V-E alignments is 11.07 years, individual periods are clustered
near 10.38 and 12.00 years. The sunspot cycle period has been reported as being bi-modal.

In addition, the proportion of occurrences of 10.38 and 12.00 years are very near 4:3, so that the
pattern repeats after about 78 years. Gleissberg (1958) observed that there is a cycle of about 80
years in  sunspot maximum amplitudes (AM) and Schove confirmed that the phase of sunspot
maxima have a 78 year cycle (FM).

Both the 11.86 year Jupiter tropical period (time between perihelion's or closest approaches to the
sun and the 9.93 year J-S alignment periods are found in sunspot spectral analysis.
Unfortunately direct calculations of the tidal forces of all planets does not support the occurrence
of the dominant 11.07 year cycle. Instead, the 11.86 year period of Jupiter's perihelion dominates
the results. This has caused problems for several researchers in this field.

It occurred to me that while the actual tidal force does not have a strong 11.07 period (compared
to the 11.86 year period) it might be the case that there are oscillations in the tidal force which
are  modulated  by  the  11.07  year  period.  In  that  case  J-V-E  alignments  would  build  up  the
oscillations over some years and then allow them to die down.



 

Figure 16. Amplitude Modulation.

The band from 25 to 30 days in oscillation period covers the sun's rotation period.

Figure 17. Tidal Force of the Planets on the Sun. Amplitude of Modulations of Oscillations.



To produce Figure 17 the following steps were performed:

1. Calculate the total tidal force of the planets acting on the sun at weekly intervals from 1890 to
2000 AD.

2.  A spectral  analysis  was  performed on the weekly  tidal  forces for  nine  months to  find  the
amplitudes of oscillations of various periods. This was repeated but always using nine months'
data to produce a "voice print" from 1890 to 2000 commencing at six monthly intervals.

3. For each oscillation period, the amplitudes shown in this "voice print" were then used in a
spectral  analysis  to  determine  to  what  extent  modulations  of  that  period  were  present.  The
amplitude of the modulations are presented as a contour map.

Table 2. Relative Effects of the Planets on the Sun for Various Forces

Note that these are average values because the planets have eccentric orbits.

Mass
(E=1)

Distance
(E=1)

Tidal
Force

(M/D3)

COM
Displ
(MD)

Gravity
(Relativity)

(M/D2)

Siderial
Period
(Trop. Years)

Mercury .056 .387 .97 0 .37 .2408518
Venus .826 .723 2.19 1 1.58 .6152105
Earth (+ Moon) 1.012 1.000 1.01 1 1.01 1.0000388
Mars .108 1.524 .03 0 .05 1.880888
Jupiter 318.4 5.203 2.26 1657 11.76 11.86226
Saturn 95.2 9.538 .11 908 1.05 29.45748
Uranus 14.6 19.182 .00 280 .04 84.013
Neptune 17.3 30.06 .00 520 .02 164.795

Tidal Force is proportional to Mass divided by Distance cubed. It is a measure of the distortion of
an object due to the variation in the gravitational field surrounding the object. The tidal force is at
a maximum in both the direction of a body and the opposite direction, and at minimum at right
angles. The main tidal planets are J, V, E, M.

COM displacement is proportional to Mass times Distance. It is useful for describing the motion of
the sun, but does not cause any forces to act on any part of the sun. The main COM planets are J,
S, U, N.

Gravitational Force is proportional to Mass divided by Distance squared.
It acts in the direction of a body only. The main gravitational planets are J, V, E, S.

The tidal force "voice print" shows clear bands at certain oscillation periods namely at 22, 30, 44,
(60-75) and 120 days. The bands show both amplitude and frequency modulation. For example,
the oscillation of period 30 days is modulated by a nearly 12 year cycle.

The modulation of oscillations plot (part of which is shown in figure 17) shows many sharp peaks
for various combinations of oscillation and modulation periods. Modulation periods shown include
1.72, (2.98), (3.12), (3.26), 5.53, 5.9, 6.0, (6.6), 7.2, 11.8, 24, 36, 72 years. Oscillation periods
shown include 22, 24, 26.5, 30, 39, 44, ... 120 days.

Of particular note are the modulation of period 5.53 years to oscillations of periods 22 to 39 days.
Most of these oscillations are within the variable range of the sun's rotation period.
Although no modulations of 11.07 years were found, the 5.53 year modulations, which are half



the  11.07  period  gave  a  pointer  to  the  fact  that  the  correct  force  was  not  tidal,  but  direct
gravitational as tidal forces have double the frequencies.

COM Hypothesis

The  motion  of  the  sun  about  the  COM  of  the  solar  system  does  not  give  any  reasonable
explanation for the 11 year sunspot cycle. It does have some success at explaining the longer
term modulations, of 80-90 years and 170-180 years. Jupiter, Saturn, Uranus and Neptune are
the planets which affect the sun's motion about the COM the most. The dominant period is the
Jupiter-Saturn Synodic period of 19.86 years. The 9.93 year component in the sunspot spectrum
could be related to this (being half of 19.86 years).

If the COM hypothesis  were true, then the most distant  stars in  the universe would  have an
enormous effect on the sun due to their distance. This seems absurd.

A Planetary Solar Influence Mechanism

My research showed that the 11 year solar cycle must be the result of modulations of shorter (of
the order of the sun's rotation) period oscillations.

The tidal  hypothesis  predicted cycles  with  double  the required frequency,  which  leads  to  the
conclusion that the correct force is gravitational not tidal.

I believe that the correct mechanism is a relativistic effect of gravity.

Einstein showed that light travelling past the sun would be bent twice as much as expected by
classical physics. This was shown to be correct by observations of stars during eclipses. Until now
it seems that no-one has applied these equations to the planets' gravitational effect on photons
inside the sun. As well as an effect on photons in the sun, there will be lesser effects on matter in
the solar interior, which because of its high temperature will have slightly relativistic velocities.

The planets accelerate the sun by an amount that causes the sun to move about (relative to the
COM of  the solar  system) by several  times its  own radius  over a  period  of years.  Therefore
photons contained in the sun have forces acting on them sufficiently different to those acting on
the matter to displace the photons by several solar radii were they free to do so. Photons in the
sun are contained for long periods due to frequent deflections by matter.

As  the  planets'  gravity  displaces  the  photons,  the sun's  rotation  carries  the photons  around.
Therefore the planetary force does not accumulate in one direction. Instead, only OSCILLATIONS
in the planetary forces that closely match the sun's rotation period are able to build up over time.
Such oscillations do exist because of the changing alignments of the planets and the non-linear
relationship  of  gravity.  Harmonics  of  the planets'  orbital  and synodic  period have frequencies
within the range of the solar rotation.

The  sun  rotates  at  significantly  different  rates  at  different  latitudes,  depths  and  times.  This
complicates the calculations required to model the relativistic effects, which in turn are probably
the cause of the variable rotation.

Sunspots appear at latitudes at which the period of planetary force oscillations exactly match the
local rotation period. This should explain the butterfly diagram (figure 18) of sunspot distribution
throughout the solar cycle.



 

Figure 18. Butterfly diagram of Sunspot Distribution.

The timing and direction of flares are also surely related to these effects.

Calculating Modulations of Solar Gravitational Oscillations

Figure 19 was prepared in a similar way to Figure 17 (except that gravitational forces were used
instead of tidal forces) and is based on 100 years of weekly gravitational force data.

Oscillation periods within the solar rotation range (25 to 30 days) are modulated by periods of
near 3.45, 3.95, 5.9, 8.6, 11.1 and 19 years. Many of these periods correspond to known cycles.

Of particular note are the presence of J-V-E modulations of period 3.446 years and 11.07 years
which will be explained in detail in the next section.

GRAVITATIONAL FORCE OF THE PLANETS ON THE SUN.



Figure 19.

GRAVITATIONAL FORCE OF THE PLANETS, AMPLITUDE OF MODULATIONS OF OSCILLATIONS.

AMPLITUDE OF MODULATIONS OF OSCILLATIONS SHOWN BY DARKNESS SCALE.

The horizontal band from 25 to 30 days shows the range of the Sun's Rotation Period.

Planetary Alignments

Because  the  planets'  orbits  are  ellipses,  their  motions  are  not  uniform.  This  results  in  the
planetary alignments occurring after slightly varying intervals. Ignoring the variations due to non-
uniform motion, any two planets will have regular (superior) conjunctions. The frequency of these
conjunctions is the difference between the two planets' orbital frequencies. An orbital frequency is
the inverse of the planet's period.

For example, if Jupiter's frequency is 8 orbits per century and Venus' frequency is 162 orbits per
century, then Venus overtakes (and therefore conjuncts with) Jupiter 154 times per century. More
accurately:-

                        Sidereal Revolutions        Inverse
                           per tropical year       = period in years

Venus                    1.6254599                .6152105
Jupiter                     .0843009             11.86226
--------------------------------------------------------
V-J conjunction      1.5411590                .6488623
--------------------------------------------------------



For two planet alignments, this period can be used to accurately calculate conjunctions forwards
or backwards for thousands of years.

Figure 19. For  two  planets,  perfect  realignments  occur  at  regular  intervals  (ignoring
eccentricity), while for three planets, perfect realignments never occur.

 

For three or more planet alignments, the situation becomes much more complex. Adding Earth to
the previous J-V example gives:-

Sidereal Revolutions
per tropical year

Siderial Revolutions
in .6488623 tropical
years

-------------------- --------------------

Venus 1.6254599 1.0546997

Earth .9999612 .6488371

Jupiter .0843009 .0546997

Note that Venus and Jupiter align exactly after .6488623 years and that Earth is advanced by
0.5941374 revolutions relative to Jupiter (and Venus). Clearly Earth is badly aligned with J-V at
this time. If we consider successive J-V alignments, it is possible to plot the amount by which E is
misaligned with J-V.



 

Figure 20. Alignment of three planets J-V-E (Good alignments are circled)

In Figure 20, a good alignment is one where the Earth has a near zero misalignment with J-V.
Starting from an assumed perfect alignment, the second J-V period gives a moderate alignment,
but the fifth gives a good alignment after an interval of 3.244 years. Multiples  of  5  J-V  periods
thereafter  get  progressively  worse until  it  becomes necessary  to  add  an extra  2  J-V  periods
(between 15 and 22) and the alignments then get better every 5 periods until 32 and 37 are very
good. These correspond to periods of 20.76 and 24.00 years.

For some unknown reason, the gravitational oscillations reach maxima at intervals of 10.38 and
12.00 years, whereas best alignments take twice as long.

When a different interval is needed to correct for a gradually accumulating misalignment, then any
resulting cycles will show a phase shift. In this case, a 4.542 year cycle will occur instead of the
more common 3.244 year cycle.

I call the 3.244, 4.542, 10.38 and 12.00 year intervals "specific occurrences" because they are the
intervals after which similar conditions occur. They are NOT however the average intervals. The
long term average cycle lengths associated with the good and very good repetitions of J-V-E are
3.446 years and 11.07 years. Even better alignments recur after average intervals of 144 years
and 570 years.

Jupiter  is  the dominant planet, and has a moderately elliptical orbit, and  its  11.86 year period
between  successive  perihelions  is  near  to  the  11.07  year  J-V-E  cycle.  The  slight  difference
between 11.07 and 11.86 years mean that over a cycle of 165.3 years, J-V-E cycles occur with
Jupiter at various distances from the sun, and this period therefore modulates the sunspot cycle
amplitude.



Table 3. J-V-E average alignment periods derived from frequencies.

Frequency Period

VE conjunctions .6254987 1.5987243
EJ conjunctions .9156603 1.0921080
EJ – VE .2901616 3.446355
3VE - 2EJ .0451755 22.1359
13EJ - 19VE .019109 (52.33)
41VE - 28EJ .00696 143.7
142VE - 97EJ .00177 570
527VE - 360EJ .0001+ 9000

G T Lane in Cycles (1950) reported that the 41 month cycle (3.4+ years)  in  Stock prices was
phase modulated by a  22 year cycle.  These two periods are  expected from the gravitational
planetary effect model, due to J-V-E.

Good M-V-J alignments occur on average every 9.94 years with specific occurrences of 7.91 and
11.96 years.

The realignment of the outer planets J-S-U-N is even more complex, involving four planets. U-N
align  only  once  every  171.4  years.  J-S  alignments  occur  at  intervals  of  19.86  years.  Good
alignments of J-S with U occur on average every 159.6 years and with N on average every 185.0
years. Therefore, starting from a perfect J-S-U-N alignment, clusters of good alignments occur at
intervals of about 171.4 years, although the specific occurrences are 158.9 and 178.7 years. Many
researchers  have  found the 178.7 year  interval  and  assumed that  is  periodic.  It  is  not.  The
average period is 171.4 years, with 178.7 years being only the most common specific occurrence.
Fairbridge and Saunders (1987) missed this point in their comprehensive review of solar system
dynamics and the sun's orbit. Because of the differences between the intervals 159.6, 171.4 and
185.0, the four planet alignments progressively worsen until  after 1150 years they reach their
worst point and then begin to improve, finally becoming very good again after 2300 years.

Interestingly, the 165.3 year J-V-E/Jupiter at perihelion cycle synchronizes exactly with the J-S-U-
N cycle every 4600 years. Every 1150 years it synchronizes with J-S only.

Table 4. Dewey's times two multiples extended to 4600 years

1.12 }
2.25 }
4.5 } Various cycles observed 1.12, 2.25, 4.5, 9 years
9 }
18 Dewey/Hirst "Fundamental"
36 Tomes "Fundamental"
72
144 J-V-E very good alignment
288
575 J-V-E extremely good alignment
1150 J-V-E Sunspot cycle and J-S alignment with J at perihelion
2300 J-S-U-N alignments
4600 J-V-E Sunspot cycle and J-S-U-N alignment with J at perihelion

Major climatic cycles of 2300 and 4600 years have been extensively reported, and they seem to
be related to the long term cycles of the solar system. Weather cycles of 145 and 290 years have
also been reported. There is also some evidence for a 9200 year astronomical cycle.



The theory of harmonics put forward in this paper predicts that long period cycles will  produce
many  harmonics  especially  at  octaves  (frequency  doublings  or  period  halvings)  from  the
"fundamental". The above indicates that "somewhere out there" is a very long cycle working its
way down from millennia to years, months, weeks, days and even shorter periods. Remember the
daily  corn  prices  have  short  periods  consistent  with  this  structure.  Other  researchers  have
reported hourly and minute cycles.

The family of cycles in table 4, although not the only one, is certainly the dominant one. In the
solar system, other families include 22.5 and 10.0 year cycles.

How long is the "fundamental" period?

I don't know, it could be the cycle of the universe; the time between big bangs.
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